Phương trình mặt phẳng

Thứ năm - 04/02/2016 19:15
Phương trình tổng quát của mặt phẳng. Phương trình chính tắc của mặt phẳng. Phương trình đoạn chắn của mặt phẳng.
Hình 1. Phương trình chính tắc của mặt phẳng
Phương trình chính tắc của mặt phẳng. Mặt phẳng $\left( \alpha  \right)$ đi qua điểm ${M_0}\left( {{x_0};{y_0};{z_0}} \right)$ và có vector pháp tuyến là $\vec n = \left( {A,B,C} \right)$ sẽ có phương trình chính tắc là $$A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) + C\left( {y - {y_0}} \right) = 0.$$
Ví dụ 1. Phương trình mặt phẳng $\left( \alpha  \right)$ đi qua điểm $M\left( {2;1; - 3} \right)$ và có vector pháp tuyến $\vec n = \left( {4;2; - 1} \right)$ là
$$4\left( {x - 2} \right) + 2\left( {y - 1} \right) - 1\left( {z + 3} \right) = 0 \Leftrightarrow 4x + 2y - z - 9 = 0.$$
 Ví dụ 2. Viết phương trình mặt phẳng $\left( \alpha  \right)$ qua điểm ${M_0}\left( { - 1;1;2} \right)$ và vuông góc với trục $Ox$.
 
Giải. Ta có ${{\vec n}_\alpha } = \vec i = \left( {1;0;0} \right)$. Phương trình của mặt phẳng $\left( \alpha  \right):$ $1\left( {x + 1} \right) + 0\left( {y - 1} \right) + 0\left( {z - 2} \right) = 0 \Leftrightarrow x + 1 = 0.$
 
Phương trình tổng quát của mặt phẳng. Mặt phẳng $\left( \alpha  \right)$ có phương trình tổng quát dạng $Ax + By + Cz + D = 0$ và vector pháp tuyến là ${{\vec n}_\alpha } = \left( {A;B;C} \right) \ne \vec 0.$

Ví dụ 3. Giả sử mặt phẳng $\left( P  \right):$ $x - 2y + 3z = 0.$ Xác định vector pháp tuyến và một điểm thuộc $\left( P  \right)$.

 
Giải. Vector pháp tuyến của mặt phẳng $\left( P  \right)$  là ${{\vec n}_P} = \left( {1; - 2;3} \right)$.
Thay $x = 1,{\rm{ }}y = 2$ vào phương trình của $\left( P \right)$ ta được $1 - 2 \cdot 2 + 3z = 0 \Rightarrow z = 1 \Rightarrow {M_0}\left( {1;2;1} \right) \in \left( P \right).$

 
PhuongTrinhTheoDoanChan
Hình 2. Mặt phẳng theo đoạn chắn

Phương trình mặt phẳng theo đoạn chắn. Mặt phẳng $\left( \alpha  \right)$ đi cắt các trục toạ độ $Ox$, $Oy$, $Oz$ lần lượt ở $A\left( {a;0;0} \right),$ $B\left( {0;b;0} \right), C\left( {0;0;c} \right)$ sẽ có phương trình là $$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$  và được gọi là phương trình theo đoạn chắn của $\left( \alpha  \right)$.

Ví dụ 3. Viết phương trình tổng quát mặt phẳng đi qua ba điểm
$A\left( {2;0;0} \right),B\left( {0; - 1;0} \right),C\left( {0;0;3} \right).$

Giải. Phương trình theo đoạn chắn
$$\frac{x}{2} + \frac{y}{{ - 1}} + \frac{z}{3} = 1 \Leftrightarrow 3x - 6y + 2z - 6 = 0.$$

 
Bài tập 

(nhiều bài tập hơn khi đăng ký học tại Trung tâm Cùng học toán)
 

 

Tác giả bài viết: Cùng Học Toán

Tổng số điểm của bài viết là: 0 trong 0 đánh giá

Click để đánh giá bài viết

  Ý kiến bạn đọc

Mã bảo mật