Hai mặt phẳng vuông góc

Thứ bảy - 05/03/2016 14:44
Hai mặt phẳng vuông góc. Cách chứng minh hai mặt phẳng vuông góc

Định lý. Hai mặt phẳng vuông góc với nhau khi và chỉ khi mặt này chứa một đường vuông góc với mặt kia. $$\left. \begin{gathered}
  \left( \alpha  \right) \supset a \hfill \\
  a \bot \left( \beta  \right) \hfill \\
\end{gathered}  \right\} \Rightarrow \left( \alpha  \right) \bot \left( \beta  \right).$$









 

Ví dụ. Cho hình chóp tam giác $S.ABC$  có  đáy là tam giác vuông tại $B$,   $SA \bot \left( {ABC} \right).$  Gọi $BH$  là đường cao của $\Delta ABC.$ Chứng minh $\left( {SAB} \right) \bot \left( {ABC} \right)$ và $\left( {SBC} \right) \bot \left( {SAB} \right).$
 
Giải. Ta có $\left. \begin{gathered}
  SA \subset \left( {SAB} \right) \hfill \\
  SA \bot \left( {ABC} \right) \hfill \\
\end{gathered}  \right\} \Rightarrow \left( {SAB} \right) \bot \left( {ABC} \right).$ 

Ta có
$\left. \begin{gathered}
  SA \bot \left( {ABC} \right) \hfill \\
  BC \subset \left( {ABC} \right) \hfill \\
\end{gathered}  \right\} \Rightarrow SA \bot BC\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( 1 \right)$

Mặt khác từ giả thiết ta có $BC \bot AB\;\;\;\;\;\;\;\;\;\;\left( 2 \right)$
Từ $\left( 1 \right)\& \left( 2 \right) \Rightarrow BC \bot \left( {SAB} \right) \Rightarrow \left( {SBC} \right) \bot \left( {SAB} \right).$
 

Bài tập 

(nhiều bài tập hơn khi đăng ký học tại Trung tâm Cùng học toán)
 

Tác giả bài viết: Cùng Học Toán

Tổng số điểm của bài viết là: 5 trong 1 đánh giá

Xếp hạng: 5 - 1 phiếu bầu
Click để đánh giá bài viết

  Ý kiến bạn đọc

Mã bảo mật