Khoảng cách từ điểm đến mặt phẳng

Chủ nhật - 06/03/2016 12:32
Cách xác định và tính khoảng cách từ điểm đểm mặt phẳng.



Định nghĩa. Khoảng cách từ điểm $M$  đến mặt phẳng $\left( \alpha  \right)$  là khoảng cách giữa $M$  và hình chiếu vuông góc của nó  lên $\left( \alpha  \right)$, ký hiệu là $d\left( {M,\left( \alpha  \right)} \right).$
$$d\left( {M,\left( \alpha  \right)} \right) = MH.$$


 

Ví dụ. Cho hình chóp $S.ABCD$  có  đáy $ABCD$  là hình vuông, tất cả các mặt bên là tam giác đều cạnh bằng $a$. Gọi $O$  là giao điểm của $AC$  và $BD$.  Tính khoảng cách từ $S$  đến $\left( {ABCD} \right).$
 
Giải. Vì $\Delta SAC$  cân nên  trung tuyến $SO \bot AC.$
            Tương tự ta có $SO \bot BD.$
            $ \Rightarrow SO \bot \left( {ABCD} \right)$ $ \Rightarrow SO = d\left( {S,\left( {ABCD} \right)} \right).$
            Áp dụng công thức tính trung tuyến trong $\Delta SAC.$
                        $$\begin{gathered}
  S{O^2} = \frac{{S{A^2} + S{C^2}}}{2} - \frac{{A{C^2}}}{4} = \frac{{{a^2} + {a^2}}}{2} - \frac{{{{\left( {\sqrt 2 a} \right)}^2}}}{4} = \frac{{{a^2}}}{2}. \hfill \\
   \Rightarrow SO = \frac{a}{{\sqrt 2 }}. \hfill \\
\end{gathered} $$

 

Bài tập 

(nhiều bài tập hơn khi đăng ký học tại Trung tâm Cùng học toán)

 

Tác giả bài viết: Cùng Học Toán

Tổng số điểm của bài viết là: 0 trong 0 đánh giá

Click để đánh giá bài viết

  Ý kiến bạn đọc

Mã bảo mật